Evaluation of PVP/Au Nanocomposite Fibers as Heterogeneous Catalysts in Indole Synthesis.

نویسندگان

  • Ioanna Savva
  • Andreas S Kalogirou
  • Mariliz Achilleos
  • Eugenia Vasile
  • Panayiotis A Koutentis
  • Theodora Krasia-Christoforou
چکیده

Electrospun nanocomposite fibers consisting of crosslinked polyvinylpyrrolidone (PVP) chains and gold nanoparticles (Au NPs) were fabricated, starting from highly stable PVP/Au NP colloidal solutions with different NP loadings, followed by thermal treatment. Information on the morphological characteristics of the fibers and of the embedded Au NPs was obtained by electron microscopy. Cylindrical, bead-free fibers were visualized by Scanning Electron Microscopy (SEM) while Transmission Electron Microscopy (TEM) and Energy Diffraction X-ray (EDX) analysis supported the presence of Au NPs within the fibers and gave information on their morphologies and average diameters. These materials were briefly evaluated as heterogeneous catalytic supports for the gold-catalyzed intramolecular cyclisation of 2‑(phenylethynyl)aniline to form 2-phenyl-1H-indole. The performance of the gold catalyst was strongly dependent on the Au NP size, with the system containing the smallest Au NPs being the more effective. Moreover, a slight drop of their catalytic efficiency was observed after three consecutive reaction runs, which was attributed to morphological changes as a consequence of fiber merging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A green synthesis of di-indolyloxindols catalyzed by CuO/g-C3N4 nanocomposite under mild conditions

In this study, novel CuO/g-C3N4 nanocomposite was simply synthesized by impregnation of g-C3N4 with CuO nanoparticles. Then, the heterogeneous catalyst was characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (...

متن کامل

A green synthesis of di-indolyloxindols catalyzed by CuO/g-C3N4 nanocomposite under mild conditions

In this study, novel CuO/g-C3N4 nanocomposite was simply synthesized by impregnation of g-C3N4 with CuO nanoparticles. Then, the heterogeneous catalyst was characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (...

متن کامل

Synthetic Application of Magnetic Nanocomposite Fe3O4@PEG-Au as a Heterogeneous and Reusable Nanocatalyst in The Suzuki Coupling Reactions

In the present study, we carried out chemical synthesis and characterization of Fe3O4@PEG-Au as a magnetic nanocomposite in aqueous solution by chemical co-precipitation of Fe3+ and Fe2+ ions and encapsulated by poly (ethylene glycol) (PEG) in order to enhancing hydrophilicity, biocompatibility and immobilizing gold ions in the presence of NaBH4 as a reducing agent. Nanostructures were characte...

متن کامل

Synthesis of Au Nanoparticles by Thermal, Sonochemical and Electrochemical Methods: Optimization and Characterization

The present study concentrates on the synthesis of Au nanoparticles (AuNPs) using aqueous solution of Polyvinylpyrrolidone (PVP) and tetrachloroaurate by different methods as thermal, sonochemical and electrochemical reduction. The PVP has been used as a reducing agent and acts as a stabilizer for Au nano particles that obtained as principal product. In all synthesis procedures, the active radi...

متن کامل

Application and comparison of the catalytic activity of Fe3O4 MNPs, Kaolin and Montmorillonite K10 for the synthesis of indole derivatives

Synthesis of indole derivatives was investigated and compared to the reaction of phenylhydrazine and ketones in the presence of the heterogeneous catalysts like kaolinite, montmorillonite K10 and Fe3O4 MNPs in ethanol under reflux conditions. After comparing the HPLC chromatogram of products it was compared and found that kaolin and montmorillonite K10 are better and more efficient candidate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 21 9  شماره 

صفحات  -

تاریخ انتشار 2016